понедельник, 4 октября 2021 г.

                                                                          04.10.2021г.

ПРЕДМЕТ: "ЭЛЕКТРОТЕХНИКА."

Преподаватель: Пархоменко Лариса   Ивановна

ГРУППА № 406  Темы уроков : " Роль электротехники  и электроники для научно-                                                         технического  прогресса.", " Электротехническая терминология."

Изучить материал  и составить краткий конспект.

Решающая роль в современном научно-техническом прогрессе принадлежит электротехнике,которая, включает в себя три основных раздела: Теоретические основы электротехники (ТОЭ), Электрические машины (ЭМ) и Электронику.

Современное определение электротехники.

Электротехника - область науки и техники, использующая электрические и магнитные явления для осуществления процессов преоб­разования энергии и превращения вещества, а так же для передачи сигна­лов и информации.

В последние десятилетия из электротехники выделилась промышленная электроника с тремя направлениями: информационное, технологическое и энергетическое, которые с каждым годом приобретают все большее значение для научно-технического прогресса.Решающая роль в современном научно-техническом прогрессе принадлежит электрификации. Как известно, под электрификацией понимается широкое внедрение электрической энергии в родное хозяйство и быт, и сегодня нет такой области техники, в том или ином виде не использовалась бы электрическая энергия в будущем ее применение будет еще более расширяться.

Под электротехникой в широком смысле слова подразумевается область науки и техники, использующая электрические и магнитные явления для практических целей.

Это общее определение электротехники можно раскрыть более подробно, выделив те основные области, в которых используют электрические и магнитные явления: преобразование энергии природы (энергетическая); превращение вещества природы (технологическая); получение и передача сигналов или информации (информационная). Поэтому более полно электротехнику можно определить, как область науки и техники, использующую электрические и магнитные явления для осуществления процессов преобразования энергии и превращения вещества, а также для передачи сигналов и информации.

Развитие физической электроники, открытие новых физических явлений, установление их качественных и количественных закономерностей стимулирует развитие электронной техники. На базе этих открытий оказывается возможным:

1) создавать принципиально новые приборы (газовые и твердотельные лазеры, полупроводниковые приборы с зарядовой связью, поверхностными акустическими волнами, оптоэлектронные приборы и др.);

2) разрабатывать прогрессивные технологические процессы производства приборов (ионно-плазменное легирование полупроводников, лазерная обработка тонких плёнок, электронолитография, рентгенолитография и др.), позволяющие существенно улучшить параметры приборов и решить коренную задачу современной электронной техники – максимальную микроминиатюризацию и высокую степень интеграции твердотельных приборов;

3) расширять и углублять представление о физических процессах в электронных приборах, что даёт возможность разработчикам электронных устройств и систем обоснованно выбирать элементную базу и режимы работы приборов.

                                    ЭЛЕКТРОТЕХНИЧЕСКАЯ  ТЕРМИНОЛОГИЯ.

Самые важные понятия электротехники: электрический ток, контур электрического тока, электродвижущая сила, напряжение, электрическое сопротивление, закон Ома, электрическая энергия и мощность.

1. Электрический ток

Движущиеся носители электрического заряда образуют электрический ток подобно тому, как движущиеся частички воздуха или воды образуют воздушный или водяной поток. В зависимости от способности различных материалов проводить электрический ток они разделяются на проводники, диэлектрики и полупроводники.

К проводникам относятся вещества, обладающие электронной проводимостью, — проводники 1-го рода (все металлы, уголь) и вещества, обладающие ионной проводимостью, — проводники 2-го рода (кислоты, основания, растворы солей). Металлы содержат большое количество свободных электронов (около 1023 в одном кубическом сантиметре), которые характеризуются большой подвижностью.

Диэлектрики содержат незначительное количество свободных электронов. Поэтому они используются в качестве электроизоляционных материалов.

В полупроводнике перемещение электрических зарядов происходит при движении не только электронов, но и так называемых "дырок". Дырки представляют собой незанятые электронами места в кристаллической решетке и по своим функциям уподобляются носителям положительных зарядов.

По способности проводить электрический ток полупроводники стоят между проводниками и диэлектриками, причем их проводимость в значительной степени зависит от имеющихся в них примесей.

2.Контур электрического тока

В электрической цепи электрический ток циркулирует по замкнутому контуру. От источника ток течет по проводу через выключатель к приемнику, где он и производит желаемый эффект.

3. Электродвижущая сила, напряжение

Если на некотором участке цепи носители зарядов получают энергию, то принято говорить, что этот участок цепи — источник, развивающий электродвижущую силу (ЭДС). Источники электрической энергии называются источниками ЭДС.

На участке электрической цепи, где заряды отдают энергию, имеет место так называемое падение напряжения. Падение напряжения на участках цепи — приемниках называют короче просто напряжением.

Исходящий от источника ЭДС "импульс напряжения" распространяется со скоростью света, в то время как сами электроны движутся с очень малыми скоростями.

Электрический ток в простой электрической цепи одинаков на всех ее участках, и вследствие высокой скорости распространения импульса напряжения все электроны приходят в движение практически одновременно.

В случае разомкнутой цепи с источником ЭДС направленного движения потока электронов в ней быть не может. Однако в этой цепи свободные электроны находятся в состоянии постоянной готовности к движению, как только электрическая цепь будет замкнута. В таком случае принято говорить, что оба конца разомкнутой цепи находятся под напряжением.

Направления ЭДС Е и падения напряжения U совпадают с направлением тока, т. е. противоположны направлению движения электронов.

Единицей ЭДС и напряжения является 1 вольт (1В).

Для напряжения выбран ряд стандартизованных значений, чтобы установить единство в снабжении потребителей электрической энергией.

Для потребителей малой мощности применяются главным образом напряжения 12, 24, 36, 48, 110, 220 В. Для промышленных сетей низкого напряжения и бытовых сетей установлены напряжения 220 и 380 В. Для передачи электроэнергии на дальние расстояния применяются высокие напряжения 6000, 10000, 35000, 110000, 220000, 330000, 500000 и 750000 В.

4. Электрическое сопротивление, закон Ома

Электрические величины (ток, напряжение и сопротивление) связаны между собой. Закон Ома определяет зависимость между током, протекающим по цепи, напряжением, приложенным к участку цепи, и сопротивлением этого участка цепи.

 5.Энергия и мощность

В каждой электрической цепи происходит обмен энергией. Следует при этом различать два процесса: получение электрической энергии (в источнике ЭДС) и ее преобразование в другие виды (на участках цепи, где есть падение напряжения).


Комментариев нет:

Отправить комментарий

 15.03.2024г.                Предмет " ОСНОВЫ  ИНЖЕНЕРНОЙ   ГРАФИКИ" ГРУППА № 610 Темы уроков: " Виды нормативов  и  техничес...