воскресенье, 22 ноября 2020 г.

                                                                   23.11.2020г.

                                    Предмет: " ОСНОВЫ  ЭЛЕКТРОТЕХНИКИ"

                                                        ГРУППЫ № 312, № 201


Группа № 312 темы уроков: " Нагревание проводов электрическим током", "Простейшие магнитные поля",   "Магнитная индукция", " Электромагниты".

Изучить материал и составить краткий конспект.

                                           Нагревание проводов электрическим током.

Мы уже знаем, что при прохождении тока через электрическую лампочку её спираль нагревается и излучает видимый свет. Таким образом, мы наблюдаем тепловое действие электрического тока. Благодаря этому действию, нагреваются, например, утюг или чайник. Но при работе вентилятора или пылесоса практически не наблюдается тепловое действие, также в нормальном состоянии слабо греются провода.Факт нагрева проводника при протекании по нему тока объясняется тем, что во время движения заряженных частиц под действием электрического поля они сталкиваются с частицами проводника, в результате часть энергии передаётся этим частицам проводника, то есть средняя скорость хаотического (теплового) движения частиц проводника увеличивается, и проводник нагревается. По закону сохранения энергии кинетическая энергия свободных заряженных частиц, приобретённая под действием электрического поля, превратится во внутреннюю энергию проводника. Следовательно, можно предположить:

1. чем больше сопротивление проводника, тем больше тепла выделяется при прохождении электрического тока по проводнику, то есть количество теплоты, которое выделяется в проводнике при прохождении по нему электрического тока, прямо пропорционально сопротивлению проводника;

2. количество теплоты, выделяемое в проводнике при прохождении по нему электрического тока, зависит от силы тока (чем больше сила тока, тем большее количество свободных частиц проходит через сечение проводника в единицу времени, происходит больше столкновений, следовательно, больше энергии передаётся частицам проводника).
Можно подтвердить данные предположения с помощью опытов.

Соберём электрическую цепь, в которой последовательно с источником тока подключены два нагревателя с разными сопротивлениями, которые опущены в калориметры (прибор для измерения количества теплоты) с одинаковым количеством воды при одинаковой температуре. При прохождении электрического тока через нагреватели будет наблюдаться повышение температуры воды, причём вода будет нагреваться быстрее в том калориметре, в который помещён нагреватель с бльшим сопротивлением.То есть подтверждается предположение 1.

Для подтверждения предположения 2 соберём электрическую цепь, в которой последовательно к источнику тока подключен амперметр, лампочка накаливания и реостат. Регулируя сопротивление реостата, меняем силу тока в цепи при постоянном напряжении. При увеличении силы тока увеличивается яркость лампочки, то есть увеличивается количество теплоты, которое выделяет нить накаливания. 

                                                         Простейшие магнитные поля.

Магнитное поле – особая форма материи, существующая вокруг движущихся электрических зарядов – токов.

Источниками магнитного поля являются постоянные магниты, проводники с током. Обнаружить магнитное поле можно по действию на магнитную стрелку, проводник с током и движущиеся заряженные частицы.

Для исследования магнитного поля используют замкнутый плоский контур с током (рамку с током).

Впервые поворот магнитной стрелки около проводника, по которому протекает ток, обнаружил в 1820 году Эрстед. Ампер наблюдал взаимодействие проводников, по которым протекал ток: если токи в проводниках текут в одном направлении, то проводники притягиваются, если токи в проводниках текут в противоположных направлениях, то они отталкиваются.

Свойства магнитного поля:

  • магнитное поле материально;
  • источник и индикатор поля – электрический ток;
  • магнитное поле является вихревым – его силовые линии (линии магнитной индукции) замкнутые;
  • величина поля убывает с расстоянием от источника поля.
                                         МАГНИТНАЯ   ИНДУКЦИЯ.

Магнитная индукция – одна из основных характеристик магнитного поля. Представляет собой векторную величину и характеризует силу магнитного действия поля на перемещающиеся внутри него заряженные частицы.

С научной точки зрения данное явление можно объяснить таким образом. В основе любого металла лежит кристаллическая решётка. В этой кристаллической решётке содержатся отрицательно заряженные частицы – электроны. В ситуации, когда на проводник не оказывается никакого внешнего магнитного воздействия, заряженные частицы находятся в состоянии полного покоя.

Но в ситуации, когда проводник подпадает под воздействие магнитного поля переменной направленности, эти частицы приходят в движение. Прибор для создания магнитного поля и наблюдения явления индукции в лабораторных условиях состоит из металлической катушки, и перемещающегося в ней постоянного магнита. В результате перемещения внутри металла образуется электроток. Сила возникающего в катушке электротока зависит от нескольких факторов:

  1. Свойств металла, из которого сделана катушка.
  2. Свойств магнита, перемещающегося внутри катушки.
  3. Скорости движения катушки и магнита относительно друг друга.В результате воздействия силового поля магнита на кристаллическую решётку катушки, электроны, содержащиеся в ней, разворачиваются на определённый угол, выстраиваясь вдоль направления силовых линий поля.И чем сильнее магнитное воздействие, тем большее число электронов внутри металла поворачиваются, однороднее становится их положение в кристаллической решётке. При этом магнитные поля отдельных частиц не нейтрализуют друг друга, а наоборот, усиливают и формируют единое магнитное поле.
Единицей индукции в международной системе СИ является «тесла», сокращённо в русском варианте «Тл», в международном – «Т». Это название дано в честь сербского учёного Н. Теслы. В старой метрической системе СГС единица индукции обозначалась в честь германского физика «гаусс»: Гс – среди русскоязычных учёных, и G – в интернациональном варианте.

                                                     ЭЛЕКТРОМАГНИТЫ.

Электромагниты широко используются в технической сфере. Они неотъемлемые элементы бытовых приборов, устройств связи, электромашин, промышленного оборудования и регулировочной аппаратуры. Устройства выполняют в механизмах функцию привода для поступательного движения или поворачивания на ограниченный угол рабочего органа, а также создают удерживающее усилие. Механизмы с электрическими магнитами обеспечивают работу специальных замков, муфт и реле разного назначения, пускателей и разных автоматических выключателей.

Особенности конструкции

Электромагнит – это устройство, конструктивно состоящее из катушки с медной или алюминиевой обмоткой, ферромагнитного сердечника, а также подвижного якоря. При протекании по обмотке электротока сердечник получает магнитные свойства. Для минимизации вихревых токов магнитопроводы набираются из стальных листов. Якорь подвергается электромагнитному воздействию и, перемещаясь, передает усилие на детали механизма.

Устройства изготавливаются с внешним якорем, выполняющим вращательное или поступательное движение, может поворачиваться на определенный угол или совершать поперечное движение. Такие механизмы характеризуются незначительным усилием, но обеспечивают хорошие тяговые параметры. 

Также предлагаются электромагниты с якорем, который наполовину установлен внутри катушки, а при формировании магнитного потока задвигается внутрь. Модели отличаются высоким усилием и большим ходом привода. 

Разновидности устройств

В зависимости от конструктивных особенностей различают электромагниты:

  1. Нейтральные, магнитный поток которых формируется при прохождении по обмотке постоянного электротока. Усилие зависит от мощности магнитного поля и не изменяется от направления электротока в обмотке. При пропадании тока магнитный поток и сила притяжения, прикладываемая на привод, стремятся к нулю.
  2. Поляризованные для протекания постоянного тока, характеризующиеся двумя отдельными магнитными полями. Первое поляризующие создается постоянными магнитами, а второе рабочее образуется благодаря намагничиванию рабочей (управляющей) обмотки.
  3. Переменного тока, в которых катушка питается электротоком переменного типа. Особенность данного типа заключается в возможности регулировки мощности и направления магнитного потока. В результате электромагнитное усилие изменяется в широком диапазоне.

В зависимости от типа подключения катушки классифицируют электромагниты с последовательными и параллельными обмотками.

Основные характеристики

На практике для расчетов и оценки устройств чаще используются статическое тяговое усилие, определяющееся как зависимость электромагнитной силы от расположения якоря, а также нагрузка электромагнита – связь электромагнитной силы с величиной подаваемого на обмотку напряжения при неподвижном положении якоря. Также устройства характеризуются следующими параметрами:

  • Механическая эффективность. Параметр, представляющий полезную работу относительно максимально возможной. 
  • Время срабатывания якоря. Рассчитывается с момента получения сигнала на проводку до остановки привода в конечном положении. 
  • Степень нагрева.
  • Экономичность – определяемая как отношение потребляемой мощности к величине полезной работы.
  • Предельная потребляемая мощность.
  • Коэффициент запаса и возврата.

Параметры позволяют подобрать электромагнит, оптимально соответствующий характеристике механизма. Благодаря сравнительно простой конструкции устройства надежные в работе на протяжении длительного времени.


                 ГРУППА  № 201 тема урока: " Измерение тока и напряжения".

Изучить материал и составить краткий конспект.


Измерение тока

Для измерениятока используетсяамперметр, включаемый в цепь последовательно с электроприемником (см. рис. 2.7.). Показания амперметра позволяют судить с определенной погрешностью (см. разд. 2.5) о токе IН, протекающем через данный электроприемник – нагрузку RН.

Рис. 2.7. Схема включения амперметра для измерения тока

При измерении переменного синусоидального тока приборы электромагнитной, электродинамической, выпрямительной и тепловой систем будут давать отклонения, пропорционально действующему значению тока и в этих значениях, как правило, градуируют шкалы этих приборов.

При измерении несинусоидального переменного тока появляется дополнительная погрешность, вызванная влиянием высших гармоник в кривой тока на вращающий момент подвижной части и отклонение стрелки и, следовательно, на показания прибора.

Сопротивление измерительной катушки амперметра очень малои его последовательное включение с нагрузкой практически не вызывает увеличение сопротивления цепи и потери мощности. Так, внутреннее сопротивление амперметров колеблется от RА=0,2 Ом (электромагнитные и электродинамические системы амперметров) до RА= 0,01 Ом (магнитоэлектрические приборы ).

Ошибочное включение амперметра не последовательно, а параллельно электроприемнику (нагрузке) приводит к его подключению на сравнительно высокое напряжение и практически к короткому замыканию цепи. В этом случае, протекающий через амперметр ток IКЗ станет намного больше номинального тока IН (IКЗ/IН = 10 ¸ 1000), и будет ограничен только малым собственным сопротивлением катушки прибора. Большой ток вызовет чрезмерно большое тепловыделение в проводе катушки (Р =(IКЗ)2RА), быстрый перегрев катушки и перегорание ее проводников, после чего амперметр выходит из строя.

Поэтому необходимо тщательно проверять правильность включения амперметра в измеряемой схеме до того, как к ней подано напряжение!

 Измерение напряжения

Для измерения напряженияиспользуются вольтметры. Зажимы этих приборов включаются параллельно нагрузке, как показано на рисунке ниже.

Рис. 2.10. Схема включения вольтметра для измерения напряжения

Чтобы включение вольтметра не приводило к заметному изменению токов в цепи и режима работы нагрузки, его собственное сопротивление RB должно быть намного больше сопротивления нагрузки RH. Оно колеблется от 3–5 кОм (электромагнитные и электродинамические приборы) до 6–10 кОм (магнитоэлектрические приборы) и свыше 10 кОм (электронные приборы).

При таком включении вольтметра отклонение его стрелки будет пропорционально напряжению на том участке цепи, к которому он подключен.

Вольтметры переменного тока указывают действующее значение измеряемого напряжения.

При ошибочном включении вольтметра, то есть последовательно с электроприемником, напряжение которого должно быть измерено, прибор не будет поврежден, так как через него будет протекать ничтожно малый ток из-за очень большого внутреннего сопротивления вольтметра. В то же время, показания вольтметра при таком включении будут неверны, так как напряжение на нагрузке значительно уменьшится (в сотни и тысячи раз), а вольтметр будет показывать напряжение, близкое к напряжению источника питания. 

Комментариев нет:

Отправить комментарий

 15.03.2024г.                Предмет " ОСНОВЫ  ИНЖЕНЕРНОЙ   ГРАФИКИ" ГРУППА № 610 Темы уроков: " Виды нормативов  и  техничес...