понедельник, 30 ноября 2020 г.

                                                                             30.11.2020г.

                                                ПРЕДМЕТ : " ОСНОВЫ ЭЛЕКТРОТЕХНИКИ"

                                                          ГРУППЫ № 312, № 201

ГРУППА № 312 темы уроков:    " Понятие о вихревых токах",   "Взаимная индукция", "Индуктивность",  " Синусоидальный ток".

Изучить материал и составить краткий конспект.

Вихревые токи, или токи Фуко́ (в честь Ж. Б. Л. Фуко) — вихревой ] индукционный  объёмный электрический ток, возникающий в электрических проводниках при изменении во времени потока действующего на них магнитного поля.

Впервые вихревые токи были обнаружены французским учёным Д. Ф. Араго (1786—1853) в 1824 г. в медном диске, расположенном на оси под вращающейся магнитной стрелкой. За счёт вихревых токов диск приходил во вращение. Это явление, названное явлением Араго, было объяснено несколько лет спустя M. Фарадеем с позиций открытого им закона электромагнитной индукции: вращаемое магнитное поле наводит в медном диске вихревые токи, которые взаимодействуют с магнитной стрелкой. Вихревые токи были подробно исследованы французским физиком Фуко (1819—1868) и названы его именем. Фуко также открыл явление нагревания металлических тел, вращаемых в магнитном поле, вихревыми токами.

Токи Фуко возникают под действием изменяющегося во времени (переменного) магнитного поля  и по физической природе ничем не отличаются от индукционных токов, возникающих в проводах и вторичных обмотках электрических трансформаторов.

Поскольку электрическое сопротивление массивного   проводника может быть мало, то сила индукционного электрического тока, обусловленного токами Фуко, может достигать чрезвычайно больших значений. В соответствии с правилом Ленца токи Фуко в объеме проводника выбирают такой путь, чтобы в наибольшей мере противодействовать причине, вызывающей их протекание. Поэтому, в частности, движущиеся в сильном магнитном поле хорошие проводники испытывают сильное торможение, обусловленное взаимодействием токов Фуко с внешним магнитным полем. Этот эффект используется для демпфирования подвижных частей гальванометров, сейсмографов и других приборов без использования силы трения, а также в некоторых конструкциях тормозных систем железнодорожных поездов

.Тепловое действие токов Фуко используется в индукционных печах, где в катушку, питаемую высокочастотным генератором большой мощности, помещают проводящее тело, в котором возникают вихревые токи, разогревающие его до плавления. Подобным образом работают индукционные плиты, в которых металлическая посуда разогревается вихревыми токами, создаваемыми переменным магнитным полем катушки, расположенной внутри плиты.

С помощью токов Фуко осуществляется прогрев металлических частей вакуумных установок для их дегазации.

Laminated core eddy currents 2.svg

В соответствии с правилом Ленца вихревые токи протекают внутри проводника по таким путям и направлениям, чтобы своим действием возможно сильнее противиться причине, которая их вызывает. Вследствие этого при движении в магнитном поле на хорошие проводники действует тормозящая сила, вызываемая взаимодействием вихревых токов с магнитным полем. Этот эффект используется в ряде приборов для демпфирования колебаний их подвижных частей.

Во многих случаях токи Фуко могут быть нежелательными. Для борьбы с ними принимаются специальные меры: с целью предотвращения потерь энергии на нагревание сердечников трансформаторов, эти сердечники набирают из тонких пластин, разделённых изолирующими прослойками (шихтовка). Появление ферритов сделало возможным изготовление этих сердечников сплошными.

Вихретоковый контроль — один из методов неразрушающего контроля изделий из токопроводящих материалов.

                                                         ВЗАИМНАЯ  ИНДУКЦИЯ.

Взаимная индукция. Взаимная индукция (далее взаимоиндукция), также как и самоиндукция, является следствием явления электромагнитной индукции. Однако в отличие от самоиндукции, процесс взаимоиндукции происходит в двух или более катушках индуктивности, находящихся в поле действия друг друга, рис. 2. Рис. 2. Таким образом взаимоиндукция – это процесс наведения ЭДС в одной катушке индуктивности от ЭДС другой катушки индуктивности, в которой изменяется индукция магнитного поля, вследствие протекания по ней переменного тока. Явление взаимоиндукции достаточно хорошо изучено и описано, например, в [ 2 ] и широко применяется на практике. На рис. 2 показаны два контура 1 и 2, расположенные близко друг к другу. Если в контуре 1 течет ток I1, то он будет создавать вокруг контура магнитный поток, пропорциональный I1. Часть этого магнитного потока будет пронизывать второй контур (точнее, площадь ограниченную вторым контуром). Ф2 = L21 I1 и индуцировать в ней ЭДС, ε2 = - L21 dI1 / dt - 8 - Такое же влияние будет проявляться со стороны второго контура, т.е. при протекании в контуре 2 наведенного тока I2 возникнет магнитный поток второй катушки. Часть этого магнитного потока будет пронизывать контур 1: Ф1 = L12 I2 и индуцировать в ней ЭДС: ε1 = - L12 dI2 / dt Контуры 1 и 2 называются связанными контурами, а возникновение ЭДС в одном из контуров, при изменении силы тока в другом приводит к взаимной индукции. Величины L21 и L12 называются взаимной индуктивностью контуров, которые, как и индуктивности контуров, зависят исключительно от размеров, формы контуров, взаимного расположения контуров и магнитной проницаемости среды. Если среда вокруг контуров не является ферромагнитной, а форма и размеры катушек одинаковы, то L12 = L21. L12 = L21 = S μ μo N1 N2 / l где: S - площадь поперечного сечения сердечника, μ - магнитная проницаемость среды, μo - магнитная постоянная, равная 4 π 10-7 Гн / м, N1 - число витков в первичной обмотке, N2 - число витков во вторичной обмотке, l - длина сердечника. Размерность взаимоиндуктивности та же что и у индуктивности т.е. Генри [ Гн ]. Если же среда вокруг контуров ферромагнитная, например, катушки находятся на общем стальном сердечнике, то L21 ≠ L12 из - за нелинейной зависимости магнитной проницаемости ферромагнетика от напряженности поля.


                                                                     ИНДУКТИВНОСТЬ,

индуктивностьИндуктивностью называется идеализированный элемент электрической цепи, в котором происходит запасание энергии магнитного поля. Запасания энергии электрического поля или преобразования электрической энергии в другие виды энергии в ней не происходит.

Наиболее близким к идеализированному элементу - индуктивности - является реальный элемент электрической цепи - индуктивная катушка.

В отличие от индуктивности в индуктивной катушке имеют место также запасание энергии электрического поля и преобразование электрической энергии в другие виды энергии, в частности в тепловую.

Количественно способность реального и идеализированного элементов электрической цепи запасать энергию магнитного поля характеризуется параметром, называемым индуктивностью.

Таким образом термин «индуктивность» применяется как название идеализированного элемента электрической цепи, как название параметра, количественно характеризующего свойства этого элемента, и как название основного параметра индуктивной катушки.

Условное графическое обозначение индуктивности

Рис. 1. Условное графическое обозначение индуктивности

Связь между напряжением и током в индуктивной катушке определяется законом электромагнитной индукции, из которого следует, что при изменении магнитного потока, пронизывающего индуктивную катушку, в ней наводится электродвижущая сила е, пропорциональная скорости изменения потокосцепления катушки ψ и направленная таким образом, чтобы вызываемый ею ток стремился воспрепятствовать изменению магнитного потока:

e = - dψ / dt

Потокосцепление катушки равно алгебраической сумме магнитных потоков пронизывающих ее отдельные витки:

Потокосцепление катушки ψ, так же как и магнитный поток Ф, может быть представлено в виде суммы двух составляющих: потокосцепления самоиндукции ψси, и потокосцепления внешних полей ψвп

ψ= ψси + ψвп


СИНУСОИДАЛЬНЫЙ  ТОК.

Синусоидальный ток представляет собой функцию времени. То есть в отличие от постоянного тока его значение меняется с течением времени. Основными характеристиками синусоидального тока являются. Амплитуда частота и начальная фаза.

Частота f это количество колебаний в единицу времени. За единицу времени в системе СИ принимается одна секунда. Таким образом, количество колебаний за секунду это и есть частота синусоидального тока. И измеряется она в Герцах. Величина обратная частоте называется периодом колебания T=1/f (с). Определение периода звучит так период это время полного колебания. Если представить себе маятник часов, то период это время за которое он совершит движение из одного крайнего положения в другое и обратно.

Амплитуда синусоидального тока - это максимальное значение тока, которое он достигает за период колебания. Опять же, если рассматривать на примере маятника, то амплитуда это расстояние от положения равновесия до одного из крайних положений.

Начальная фаза синусоидального тока - это то время, на которое отстает либо опережает синусоида начальный момент времени. Представим две синусоиды одна, из которых начинается условно в нуле а другая в 1. То можно сказать, что вторая синусоида отстаёт по фазе от первой. Если обе синусоиды начинаются в одной точке то можно сказать что они синфазные, то есть имеют одну фазу. При этом они обе могут отставать от начального момента времени на одну и ту же величину, то есть иметь одинаковую начальную фазу

Математически синусоидальный ток описывается уравнением:

i=Im*sin(wt+j) ,

где i - мгновенное значение тока это величина тока в определенный момент времени с учетом частоты и начальной фазы тока.

Im - амплитуда тока.

j - начальная фаза.

w - угловая частота выражается как угловая частота - 

Синусоидальный ток характеризуется амплитудой Im и периодом T.

Энергетические характеристики синусоидальных сигналов обычно описываются действующими значениями тока I, равными среднеквадратичному за период значению:

Аналогично вводятся действующие значения напряжения U и напряжения ЭДС E. Действующие значения наиболее часто используют для характеристики интенсивности синусоидальных сигналов: электроизмерительные приборы проградуированы так, что они показывают действующие значения синусоидальных токов и напряжений. Для синусоидальных величин вычисление интеграла в последнем выражении приводит к соотношениям: 

 

Способы представления синусоидального тока

В современной технике широко используют разнообразные по форме переменные токи и напряжения: синусоидальные, прямоугольные, треугольные и др. Значение тока, напряжения, ЭДС в любой момент времени t называется мгновенным значением и обозначается малыми строчными буквами, соответственно: i = i(t); u = u(t); e = e(t).

Токи, напряжения и ЭДС, мгновенные значения которых повторяются через равные промежутки времени, называют периодическими, а наименьший промежуток времени, через который эти повторения происходят, называют периодом Т.



Если кривая изменения периодического тока описывается синусоидой, то ток называют синусоидальным. Если кривая отличается от синусоиды, то ток несинусоидальный.

В промышленных масштабах электрическая энергия производится, передается и расходуется потребителями в виде синусоидальных токов, напряжений и ЭДС,

При расчете и анализе электрических цепей применяют несколько способов представления синусоидальных электрических величин.

ГРУППА  № 201 тема урока: " Основные характеристики  генератора  постоянного тока.

Изучить материал и составить краткий конспект.

Генера́тор постоя́нного то́ка — электрическая машина, преобразующая механическую энергию в электрическую энергию постоянного тока.

Принцип действия генераторов тока

Принцип действия генератора основан на законе электромагнитной индукции — индуцировании электродвижущей силы в прямоугольном контуре (проволочной рамке), находящейся в однородном вращающемся магнитном поле.

Рис. 1 В прямоугольном контуре вращается постоянный магнит.

Допустим, что однородное магнитное поле, создаваемое постоянным магнитом вращается вокруг своей оси в проводящем контуре (проволочной рамке) с равномерной угловой скоростью . Две равные порознь вертикальные стороны контура (см. рисунок) являются активными, так как их пересекают магнитные линии магнитного поля. Две равные порознь горизонтальные стороны контура — не активные, так как магнитные линии магнитного поля их не пересекают, магнитные линии скользят вдоль горизонтальных сторон, электродвижущая сила в них не образуется.

В каждой из активных сторон контура индуктируется электродвижущая сила, величина которой определяется по формуле:

 и , где

 и  — мгновенные значения электродвижущих сил, индуктированных в активных сторонах контура, в вольтах;

 — магнитная индукция магнитного поля в вольт-секундах на квадратный метр (ТлТесла);

 — длина каждой из активных сторон контура в метрах;

 — линейная скорость, с которой вращаются активные стороны контура, в метрах в секунду;

 — время в секундах;

 и  — углы, под которыми магнитные линии пересекают активные стороны контура.

Так как электродвижущие силы, индуктированные в активных сторонах контура, действуют согласно друг с другом, то результирующая электродвижущая сила, индуктируемая в контуре,

будет равна , то есть индуктированная электродвижущая сила в контуре изменяется по синусоидальному закону.

Если в контуре вращается однородное магнитное поле с равномерной угловой скоростью, то в нём индуктируется синусоидальная электродвижущая сила.

Особенности и устройство генераторов постоянного тока[править | править код]

Рис. 2 Рамка с током вращается в магнитном поле, токосъём происходит щётками с полуколец.
Рис. 3     Переменный синусоидальный ток     Пульсирующий ток, снимаемый с двух полуколец     Выпрямленный и сглаженный ток, снимаемый с якоря с большим количеством контуров и коллекторных пластин

В генераторах постоянного тока неподвижны магниты, создающие магнитное поле и называемые катушками возбуждения, а вращаются катушки, в которых индуцируется электродвижущая сила и с которых производится съём тока. Другая, главная особенность, состоит в способе съёма тока с катушек, который основан на том, что если концы активных сторон контура присоединить не к контактным кольцам (как это делается в генераторах переменного тока), а к полукольцам с изолированными промежутками между ними (как показано на рисунке 2) то тогда рамка с током будет давать во внешнюю цепь выпрямленное электрическое напряжение.

При вращении контура вместе с ним вращаются и полукольца вокруг их общей оси. Токосъём с полуколец осуществляется щётками. Так как щётки неподвижны, то они попеременно соприкасаются то с одним, то с другим полукольцом. Обмен полукольцами происходит в тот момент, когда синусоидальная электродвижущая сила в контуре переходит через своё нулевое значение. В результате каждая щётка сохраняет свою полярность неизменной. Если на полукольцах имеется некоторое синусоидальное напряжение, то на щётках оно уже становится выпрямленным (в данном случае пульсирующим). На практике в генераторах постоянного тока применяют не один проволочный контур, а значительно их большее количество, вывод от каждого конца каждого контура присоединяется к собственной контактной пластине, отделённой от соседних пластин изолирующими промежутками. Совокупность контактных пластин и изолирующих промежутков называется колле́ктор, контактная пластина носит название колле́кторная пласти́на. Весь узел в сборе (коллектор, щётки и держатели щёток) называется щёточно-колле́кторный у́зелМатериал, из которого изготавливают изолятор между коллекторными пластинами подбирается таким образом, чтобы его твёрдость приблизительно равнялась твёрдости коллекторных пластин (для равномерного износа). Применяется, как правило, миканит (прессованная слюда). Коллекторные пластины, как правило, изготавливают из меди.

Ярмо (статор) шестиполюсного генератора постоянного тока. Видны полюсные наконечники особой формы.
Якорь генератора постоянного тока, цилиндр среднего диаметра — коллектор.

Остов (статор) генератора называется ярмо́. К ярму прикреплены сердечники электромагнитов, крышки с подшипниками, в которых вращается вал генератора. Ярмо изготавливается из ферромагнитного материала (литая сталь). На сердечники электромагнитов насажены катушки возбуждения. Чтобы придать магнитным линиям магнитного поля необходимое направление, сердечники электромагнитов снабжаются полюсными наконечниками. Электромагниты, питаемые постоянным током (током возбуждения) создают в генераторе магнитное поле. Катушка возбуждения состоит из витков медной изолированной проволоки, намотанной на каркас. Обмотки катушек возбуждения соединены друг с другом последовательно таким образом, что любые два соседних сердечника имеют разноимённую магнитную полярность.

Вращающаяся часть генератора (ротор) называется я́корь. Сердечник якоря изготавливается из электротехнической стали. Во избежание потерь на вихревые токи сердечник якоря собирается из отдельных стальных листов зубчатой формы, которые образуют впадины (пазы). Во впадины укладывается якорная (силовая) обмотка. В маломощных генераторах якорная обмотка изготавливается из медной изолированной проволоки, в мощных — из медных полос прямоугольной формы. Чтобы под действием центробежных сил якорная обмотка не была вырвана из пазов её закрепляют на сердечнике бандажами. Обмотка якоря наносится на сердечник так, что каждые два активных проводника, соединённых непосредственно и последовательно друг с другом, лежат под разными магнитными полюсами. Обмотка называется волновой, если провод проходит поочерёдно под всеми полюсами и возвращается к исходному полюсу, и петлевой, если провод, пройдя под «северным» полюсом, а затем под соседним «южным» полюсом, возвращается на прежний «северный» полюс.

Чтобы пластины коллектора и изолирующие миканитовые (слюдяные) пластины между ними не были вырваны центробежными силами из своих гнёзд — в нижней части они имеют крепление «ласточкин хвост».

Щётки, как правило, изготавливают из графита. Минимальное число щёток в генераторе постоянного тока равно двум: одна является положительным полюсом генератора (положительная щётка), другая — отрицательным полюсом (отрицательная щётка). В многополюсных генераторах число пар щёток обычно равняется числу пар полюсов, что обеспечивает лучшую работу генератора. Щётки одинаковой полярности (одноимённые щётки) электрически соединены друг с другом.

Щётка одновременно перекрывает две или три коллекторные пластины, это уменьшает искрение на коллекторе под щётками (улучшается коммутация).

Щёткодержатель обеспечивает постоянный прижим щёток вогнутой стороной к цилиндрической поверхности коллектора.

Комментариев нет:

Отправить комментарий

 15.03.2024г.                Предмет " ОСНОВЫ  ИНЖЕНЕРНОЙ   ГРАФИКИ" ГРУППА № 610 Темы уроков: " Виды нормативов  и  техничес...