понедельник, 2 ноября 2020 г.

                                                               29.10.2020г.

ПРЕДМЕТ  "МАТЕРИАЛОВЕДЕНИЕ".

ГРУППЫ:№306, №311, №312.

Группа № 306 темы уроков:"Цветные металлы и их сплавы"," Медь и ее сплавы".

 Цветные металлы и их сплавы.

Ценные свойства цветных металлов обусловили их широкое применение в различных отраслях современного производства. Медь, алюминий, цинк, магний, титан и другие металлы и их сплавы являются незаменимыми материалами для приборостроительной и электротехнической промышленности, самолетостроения и радиоэлектроники, ядерной и космической отраслей техники. Цветные металлы обладают рядом ценных свойств: высокой теплопроводностью, очень малой плотностью (алюминий и магний), очень низкой температурой плавления (олово, свинец), высокой коррозионной стойкостью (титан, алюминий). В различных отраслях промышленности широко применяются сплавы алюминия с другими легирующими элементами.

Сплавы на магниевой основе отличаются малой плотностью, высокой удельной прочностью, хорошо обрабатываются резанием. Они нашли широкое применение в машиностроении и в частности в авиастроении.

Техническая медь, содержащая не более 0,1 % примесей, применяется для различных видов проводников тока.

Медные сплавы по химическому составу классифицируются на латуни и бронзы. В свою очередь латуни по химическому составу подразделяются на простые, легированные только цинком, и специальные, которые, помимо цинка, содержат в качестве легирующих элементов свинец, олово, никель, марганец.

Бронзы также подразделяются на оловянные и безоловянные. Безоловянные бронзы имеют высокую прочность, хорошие антикоррозионные и антифрикционные свойства.

В металлургии широко используется магний, с помощью которого осуществляют раскисление и обессеривание неко

торых металлов и сплавов, модифицируют серый чугун с целью получения графита шаровидной формы, производят трудно восстанавливаемые металлы (например, титан), смеси порошка магния с окислителями служат для изготовления осветительных и зажигательных ракет в реактивной технике и пиротехнике. Свойства магния значительно улучшаются за счет легирования. Алюминий и цинк с массовой долей до 7 % повышают его механические свойства, марганец улучшает его сопротивление коррозии и свариваемость, цирконий, введенный в сплав вместе с цинком, измельчает зерно (в структуре сплава), повышает механические свойства и сопротивление коррозии.

Из магниевых сплавов изготавливают фасонные отливки, а также полуфабрикаты – листы, плиты, прутки, профили, трубы, проволоки. Промышленный магний получают электролитическим способом из магнезита, доломита, карналлита, морской воды и отходов различного производства по схеме получение чистых безводных солей магния, электролиз этих солей в расплавленном состоянии и рафинирование магния В природе мощные скопления образуют карбонаты магния – магнезит и доломит, а также карналлиты.

В пищевой промышленности широко применяется упаковочная фольга из алюминия и его сплавов – для обертки кондитерских и молочных изделий, а также в больших количествах используется алюминиевая посуда (пищеварочные котлы, поддоны, ванны и т. д.).

 Медь и ее сплавы

Медь относится к числу металлов, известных с глубокой древности. Раннему знакомству человека с медью способствовало то, что она встречается в природе в свободном состоянии в виде самородков, которые иногда достигают значительных размеров. В настоящее время медь широко используется в электромашиностроении, при строительстве линий электропередач, для изготовления оборудования телеграфной и телефонной связи, радио—и телевизионной аппаратуры. Из меди изготовляют провода, кабели, шины и другие токопроводящие изделия. Медь обладает высокой электропроводностью и теплопроводностью, прочностью вязкостью и коррозионной стойкостью. Физические свойства ее обусловлены структурой. Она имеет кубическую гра—нецентрированную пространственную решетку. Ее температура плавления – +1083 °C, кипения – +2360 °C. Средний предел прочности зависит от вида обработки и составляет от 220 до 420 МПа (22–45 кгс/мм 2), относительное удлинение – 4—60 %, твердость – 35—130 НВ, плотность – 8,94 г/см 3. Обладая замечательными свойствами, медь в то же время как конструкционный материал не удовлетворяет требованиям машиностроения, поэтому ее легируют, т. е. вводят в сплавы такие металлы, как цинк, олово, алюминий, никель и другие, за счет чего улучшаются ее механические и технологические свойства. В чистом виде медь применяется ограниченно, более широко – ее сплавы. По химическому составу медные сплавы подразделяют на латуни, бронзы и медноникелевые, по технологическому назначению – на деформируемые, используемые для производства полуфабрикатов (проволоки, листа, полос, профиля), и литейные, применяемые для литья деталей.

Латуни – сплавы меди с цинком и другими компонентами. Латуни, содержащие, кроме цинка, другие легирующие элементы, называются сложными, или специальными, и именуются по вводимым, кроме цинка, легирующим компонентам. Например: томпак Л90 – это латунь, содержащая 90 % меди, остальное – цинк; латунь алюминиевая ЛА77–2 – 77 % меди, 2 % алюминия, остальное – цинк и т. д. По сравнению с медью латуни обладают большой прочностью, коррозионной стойкостью и упругостью. Они обрабатываются литьем, давлением и резанием. Из них изготовляют полуфабрикаты (листы, ленты, полосы, трубы конденсаторов и теплообменников, проволоку, штамповки, запорную арматуру – краны, вентили, медали и значки, художественные изделия, музыкальные инструменты, сильфоны, подшипники).

Бронзы – сплавы на основе меди, в которых в качестве добавок используются олово, алюминий, бериллий, кремний, свинец, хром и другие элементы. Бронзы подразделяются на безоловянные (БрА9Мц2Л и др.), оловянные (БрО3ц12С5 и др.), алюминиевые (БрА5, БрА7 и др.), кремниевые (БрКН1–3, БрКМц3–1), марганцевые (БрМц5), бериллиевые бронзы (БрБ2, БрБНТ1,7 и др.). Бронзы используются для производства запорной арматуры (краны, вентили), различных деталей, работающих в воде, масле, паре, слабоагрессивных средах, морской воде.

ГРУППА №311 темы уроков:"Физические, химические свойства металлов",  "Железоуглеродистые сплавы.

"Физические свойства К физическим свойствам металлов относят цвет, плотность, температуру плавления, теплопроводность, тепловое расширение, теплоемкость, электропроводность, магнитные свойства и др. Цвет металла Цветом называют способность металлов отражать световое излучение с определенной длиной волны. Например, медь имеет розово-красный цвет, алюминий – серебристо-белый. Плотность металла Плотность металла характеризуется его массой, заключенной в единице объема. По плотности все металлы делят на легкие (менее 4500 кг/м3) и тяжелые. Плотность имеет большое значение при создании различных изделий. Например, в самолето- и ракетостроении стремятся использовать более легкие металлы и сплавы (алюминиевые, магниевые, титановые), что способствует снижению массы изделий. Температура плавления Температурой плавления называют температуру, при которой металл переходит из твердого состояния в жидкое. По температуре плавления различают тугоплавкие металлы (вольфрам 3416°С, тантал 2950°С, титан 1725°С, и др.) и легкоплавкие (олово 232°С, свинец 327°С, цинк 419,5°С, алюминий 660°С). Температура плавления имеет большое значение при выборе металлов для изготовления литых изделий, сварных и паяных соединений, термоэлектрических приборов и других изделий. В единицах СИ температуру плавления выражают в градусах Кельвина (К). Теплопроводность Теплопроводностью называют способность металлов передавать тепло от более нагретых к менее нагретым участкам тела. Серебро, медь, алюминии обладают большой теплопроводностью. Железо имеет теплопроводность примерно в три раза меньше, чем алюминий, и в пять раз меньше, чем медь. Теплопроводность имеет большое значение при выборе материала для деталей. Например, если металл плохо проводит тепло, то при нагреве и быстром охлаждении (термическая обработка, сварка) в нем образуются трещины. Некоторые детали машин (поршни двигателей, лопатки турбин) должны быть изготовлены из материалов с хорошей теплопроводностью. В единицах СИ теплопроводность имеет размерность Вт/(м∙К). Тепловое расширение Тепловым расширением называют способность металлов увеличиваться в размерах при нагревании и уменьшаться при охлаждении. Тепловое расширение характеризуется коэффициентом линейного расширения α=(l2-l1)/[l1(t2-t1)], где l1 и l2 длины тела при температурах t1 и t2. Коэффициент объемного расширения равен 3α. Тепловые расширения должны учитываться при сварке, ковке и горячей объемной штамповке, изготовлении литейных форм, штампов, прокатных валков, калибров, выполнении точных соединений и сборке приборов, при строительстве мостовых ферм, укладке железнодорожных рельс. Теплоемкость Теплоемкостью называют способность металла при нагревании поглощать определенное количество тепла. В единицах СИ имеет размерность Дж/К. Теплоемкость различных металлов сравнивают по величине удельной теплоемкости – количеству тепла, выраженному в больших калориях, которое требуется для повышения температуры 1 кг металла на 1°С (в единицах СИ – Дж/(кг∙К). Способность проводить электрический ток Способность металлов проводить электрический ток оценивают двумя взаимно противоположными характеристиками – электропроводностью и электросопротивлением. Электрическая проводимость оценивается в системе СИ в сименсах (См), а удельная электропроводность – в Cм/м, аналогично электросопротивление выражают в омах (Ом), а удельное электросопротивление — в Ом/м. Хорошая электропроводность необходима, например, для токонесущих проводов (медь, алюминий). При изготовлении электронагревателей приборов и печей необходимы сплавы с высоким электросопротивлением (нихром, константан, манганин). С повышением температуры металла его электропроводность уменьшается, а с понижением – увеличивается. Магнитные свойства Магнитные свойства характеризуются абсолютной магнитной проницаемостью или магнитной постоянной, т. е. способностью металлов намагничиваться. В единицах СИ магнитная постоянная имеет размерность Гн/м. Высокими магнитными свойствами обладают железо, никель, кобальт и их сплавы, называемые ферромагнитными. Материалы с магнитными свойствами применяют в электротехнической аппаратуре и для изготовления магнитов. Химические свойства Химические свойства характеризуют способность металлов и сплавов сопротивляться окислению или вступать в соединение с различными веществами: кислородом воздуха, растворами кислот, щелочей и др. Чем легче металл вступает в соединение с другими элементами, тем быстрее он разрушается. Химическое разрушение металлов под действием на их поверхность внешней агрессивной среды называют коррозией. Металлы, стойкие к окислению при сильном нагреве, называют жаростойкими или окалиностойкими. Такие металлы применяют для изготовления деталей, которые эксплуатируются в зоне высоких температур. Сопротивление металлов коррозии, окалинообразованию и растворению определяют по изменению массы испытуемых образцов на единицу поверхности за единицу времени. Химические свойства металлов обязательно учитываются при изготовлении тех или иных изделий. Особенно это относится к изделиям или деталям, работающим в химически агрессивных средах.

Источник: http://osvarke.net/materialovedenie/fizicheskie-i-himicheskie-svojstva-metallov/

Железоуглеродистые сплавы. 

     Железоуглеродистые  сплавы, это сплавы железа с углеродом, на основе железа. Различают чистые железоуглеродистые сплавы (со следами  примесей), получаемые в небольших  количествах для исследовательских  целей, технические железоуглеродистые сплавы — стали (до 2% C) и чугуны (свыше 2% C), содержащие примеси, легирующие элементы, а иногда и модифицирующие добавки.

     Сталь и чугун являются наиболее важными  в технике сплавами. Достаточно отметить, что они составляют около 95% всех используемых в мире сплавов. Сталью называют сплавы железа с углеродом и другими элементами, содержащие до 2% углерода. Углерод – важнейшая примесь стали, так как от количества его зависят прочность, твердость и пластичность стали. Кроме железа и углерода, в состав стали входят в том или ином количестве кремний, марганец, сера и фосфор. Эти примеси обычно попадают в сталь в процессе ее выплавки и являются ее неизбежными спутниками.

     Чугун – это тоже сплав на железой  основе. Принципиальное отличие чугуна от стали заключается, прежде всего, в более высоком содержании в  чугуне углерода. Чугуном называют сплавы железа с углеродом, содержащие более 2% углерода. Чаще всего находят  применение чугуны, содержащие 3 - 3,5% углерода. В состав чугуна входят те же примеси, что и сталь, то есть кремний, марганец, сера и фосфор, но в несколько больших количествах.  
                                Строение  и свойства железоуглеродистых сплавов

 Варьируя  состав и структуру, получают железоуглеродистые сплавы с разнообразными свойствами, что делает их универсальными материалами.

     Металлы, как и другие вещества, могут существовать в различных кристаллических  формах (модификациях). Это явление  называется полиморфизмом.Полиморфные превращения в металлах происходят при изменении температуры.

     Химически чистые металлы на практике используют редко. Это связано с трудностью получения чистых веществ, а также  с возможностью получать металлы  с определенными требуемыми свойствами путем создания различных сплавов.

     В металловедении различают три типа сплавов: твердый раствор, механическую смесь, химическое соединение. Если атомы  входящих в состав сплава элементов  незначительно отличаются размером и строением электронной оболочки, то они могут образовывать общую  кристаллическую решетку. Сплав  с таким строением называют твердым  раствором. Если элементы сплава не образуют твердого раствора, а каждый из них  кристаллизуется самостоятельно, то такой сплав называют механической смесью. Если элементы сплава вступают в химическое взаимодействие, образуя  новое вещество, такой сплав называют химическим соединением. Практически  сплавы могут сочетать в себе все  три типа строения.

     Рассмотрим  зависимость свойств сплава от его состава и строения на примере железоуглеродистых сплавов (сталей и чугунов).

     Чистое  железо — серебристо-белый мягкий пластичный металл, почти не окисляющийся на воздухе. Прочность его значительно  ниже прочности стали и чугуна. При производстве в черные металлы  в виде примесей к железу попадают углерод, кремний и некоторые  другие вещества. Наибольшее влияние  на их свойства оказывает углерод, содержащийся в количестве 0,5…5 .

     Способность железа растворять углерод и другие элементы служит основой для получения  разнообразных сплавов.

     Углерод, растворяясь в железе, образует твердые  растворы. В низкотемпературной модификации  железа (а-железе) растворяется мало углерода (до 0,02), такой раствор называют ферритом. Феррит обладает низкой твердостью и высокой пластичностью. Чем больше в сплаве содержится феррита, тем он мягче и пластичнее. Высокотемпературная модификация железа (у-железо) лучше растворяет углерод (до 2%), образуя твердый раствор аустенит, также характеризующийся высокой пластичностью.

     Химическое  соединение железа с углеродом —  карбид железа, в котором содержится 6,67 % углерода, называют цементитом. Цементит хрупок и имеет высокую твердость. Чем больше цементита в сплаве, тем он более твердый и хрупкий. В некоторых случаях (например, в  присутствии больших количеств кремния) цементит не образуется, а углерод выделяется в виде графита (например, в сером чугуне).

     В сталях и чугунах феррит, аустенит и цементит существуют в виде механических смесей. Иными словами, сталь и  чугун — поликристаллические  материалы, свойства которых зависят  как от химического состава (количества железа, углерода и других примесей), так и от структуры (типа и размера  кристаллов). Например, при нагревании до температуры выше 723 °С твердая и прочная углеродистая сталь, состоящая из смеси феррита и цементита, становится мягкой и прочность ее падает, так как смесь феррита и цементита переходит в аустенит — раствор углерода в железе.

     На  этом явлении основана горячая обработка (прокат, ковка) углеродистых сталей. Этим же объясняется резкое падение прочности  и, как следствие, деформация и разрушение стальных конструкций из-за нагрева  во время пожара.

ГРУППА № 312 тема урока : " Состав стали". 
 

Состав стали

Основа состава – железо и углерод. В сплаве обычно содержится не более 2,14%.

Основной критерий классификации – химический состав. Вся представленная на рынке продукция разделена на два основных вида сырья:

  • Углеродистая сталь. В ее составе кроме железа и углерода также есть фосфор, сера, марганец и кремний. В зависимости от процентного содержания углерода сырье разделено на высоко-, средне- и низколегированные марки. Этот материал можно применять, даже если перед вами стоит задача создать инструмент, использующийся под постоянным напряжением и высокими нагрузками.
  • Легированная сталь. К основным компонентам добавлены дополнительные легирующие элементы. Среди них – множество типов веществ, от кремния, бора и азота до хрома, циркония, ниобия, вольфрама и титана. Это влияет не только на стоимость, но и на качество продукции, область использования и характеристики. В продаже вы найдете множество типов продукции – жаропрочные, цементуемые, улучшаемые стали. В зависимости от структуры сырье может быть доэвтектоидного, ледебуритного, эвтектоидного и заэвтектоидного типа.

Свойства и применение стали можно определить по ее марке.

В состав стали могут добавляться различные примеси. В зависимости от того, в каком количестве они представлены в рецептуре, выделяются два основных типа продукции:

  • Обыкновенного качества. В составе такого сплава углерода не более 0,6%. Основные стандарты, используемые в изготовлении –ГОСТ 14637 и ГОСТ 380-94. Многие виды продукции в маркировке указываются как «Ст», что означает стандартное качество. На рынке этот тип сырья –один из наиболее доступных по стоимости.
  • Качественный. К этой категории относятся легированная и углеродистая разновидности. Уже в маркировке указывается особенность состава, количество углерода в сотых долях. Основной стандарт, которого придерживаются изготовители, – ГОСТ 1577. Стоит такая сталь дороже, чем продукт обыкновенного качества. При этом материал намного более пластичен, хорошо сваривается и отлично защищен от механического воздействия.

Комментариев нет:

Отправить комментарий

 15.03.2024г.                Предмет " ОСНОВЫ  ИНЖЕНЕРНОЙ   ГРАФИКИ" ГРУППА № 610 Темы уроков: " Виды нормативов  и  техничес...