09.09.2021- 10 .09.2021г.
ПРЕДМЕТ " МАТЕРИАЛОВЕДЕНИЕ"
Преподаватель Пархоменко Лариса Ивановна
ГРУППЫ № 406, № 411
09.09.2021 ГРУППА № 406 Темы уроков: "Свойства, применение неметаллических материалов в автомобилем\строении", " Методы изучения структур металлов".
Изучить материал и составить краткий конспект.
Свойства, применение неметаллических материалов в автомобилестроении.
К неметаллическим материалам относятся пластмассы, абразивные прокладочные материалы.
Пластмассы — это материалы высокомолекулярных органических соединений, способные при определенных температурах и давлении принимать заданную форму и сохранять ее в условиях эксплуатации.
Высокомолекулярные соединения (полимеры) являются главной составляющей пластмасс и делятся по происхождению на природные п синтетические. К природным принадлежат целлюлоза, дерево, натуральный каучук, натуральные смолы, шерсть, шелк и .др. Синтетические пластмассы могут состоять только из полимера, например: полиэтилен, полистирол и др.Эпоксидные, полиамидные, силиконовые, битумные и другие смолы используют для заделки технологических разъемов, устранения вмятин, разрывов и коррозионных разрушений на деталях из тонколистового металла, устранения трещин и раковин.
Клеи фенольные, полиуретанов ые, эпоксидные, резиновые и другие широко применяют в авторемонтном производстве для соединения металлических деталей между собой, металлических деталей с резиновыми и пластмассовыми Деталями, пластмассовых деталей друг с другом, резиновых деталей между собой и в ряде других случаев.
Пресспорошки представляют собой композиции, включающие тот или иной полимер и все необходимые добавки. Пресспорошки предназначены для переработки в детали методом прессования. Из различных пресспорошков изготавливают такие детали автомобилей, как ручка тяги центрального переключателя света, кнопка звукового сигнала и др.
Органическое стекло, или полиметилметакрилат, —-это пластмасса, обладающая высокой светопрозрачностью. Сочетание светопрозрачности с высокой механической прочностью, легкостью, стойкостью к воде, бензину делает этот материал особенно пригодным для остекления автомобилей. Органическое стекло легко штампуется и принимает любую форму при нагревании, а также хорошо склеивается .Абразивными материалами называют твердые, зернистые, порошкообразные и кристаллические материалы. При обработке такими материалами металлических деталей зерна абразива снимают с поверхности детали металл в виде очень тонкой стружки, при этом обеспечивается получение деталей с высоким классом шероховатости и высокой точностью поверхности. Абразивные материалы применяются для шлифования и доводочных операций (хонингование, притирка, суперфиниширование, полирование) деталей автомобилей из различных металлов и сплавов.
Абразивные материалы разделяются на ДЕе группы — естественные и искусственные. К естественным относятся природный алмаз, наждак, И0Г)У11д к искусственным — синтетический алмаз, электрокорунд, карбид’кремния и карбид бора.Для ручной или станочной зачистки и отделки поверхности деталей применяют шлифовальные шкурки. Шлифовальная шкурка изготавливается наклеиванием различных абразивных материалов (порош-: ков электрокорунда, карбида кремния, кварца, стекла) на бумагу или ткань (бязь, нанку, техническую саржу). Шлифовальные шкурки в рулонах или листах делятся по номерам зернистости.
Для притирки и полирования применяют порошки абразивных материалов (корунд, электрокорунд, карбид кремния, карбид бора, естественный и синтетический алмаз) различной зернистости, а также разнообразные пасты, содержащие, кроме абразива и связки, поверх-’ ностно-активные вещества, например олеиновую кислоту.
Прокладочные материалы. Материалы, применяемые для уплотнения разъемных частей двигателей, картеров агрегатов, трансмиссии и других узлов автомобилей с целью их герметизации.
В герметизации зазоров между подвижными частями для защиты от трения от пыли, грязи и воды, называются прокладочными или “ тотнительными. Уплотнительные материалы подразделяют на бумажные, асбестовые, пробковые, войлочные, резиновые, кожаные. Иногда в качестве уплотнительных материалов используют алюминий, медь, свинец и др.К бумажным материалам относятся бумага, картон, прессшпан, пергамент и фибра. Бумажные материалы получают осуждением из воды на сетку массы, состоящей из измельченных п наслоенных друг на друга растительных (древесных) и других волокон.Резиновые материалы. Резина — продукт переработки натурального или синтетического каучука, полученный в результате вулканизации. Вулканизация может быть горячей и холодной и протекает с присутствием серы как вулканизирующего вещества. В состав резиновых смесей (сырых резин), кроме каучука и вулканизирующих веществ, входят наполнители (мел, тальк, сажа и др.), стабилизаторы, мягчители и другие специальные добавки.
Резина используется как прокладочный материал в условиях невысокого нагрева и для изготовления различных уплотнительных деталей, например манжет, профилей светостойких (уплотнения дверей, стекол), колец различного сечения для уплотнения подвижных соединении с возвратно-поступательным движением и т.д.
МЕТОДЫ ИЗУЧЕНИЯ СТРУКТУР МЕТАЛЛОВ.
Изучение строения металлов и сплавов производится методами макро- и микроанализа, рентгеновским методом, а также методами дефектоскопии (рентгеновской, магнитной, ультразвуковой).
Методом макроанализа изучается макроструктура, т.е. структура, видимая невооруженным глазом или с помощью лупы. При этом выявляются крупные дефекты: трещины, усадочные раковины, газовые пузыри и иное, а также неравномерность распределения примесей в металле. Макроструктуру определяют по изломам металла, по макрошлифам (это образец металла или сплава, одна из сторон которого отшлифована, тщательно обезжирена, протравлена и рассматривается с помощью лупы с увеличением в 5—10 раз).
Микроанализ выявляет структуру металла или сплава по микрошлифам, дополнительно отполированным до зеркального блеска. Шлифы рассматривают в отраженном свете под оптическим микроскопом при увеличении до 3000 раз. Из-за различной ориентировки зерен металла они травятся не в одинаковой степени, и под микроскопом свет также отражается неодинаково. Границы зерен благодаря примесям травятся сильнее, чем основной металл, и выявляются более рельефно. Зная микроструктуру, можно объяснить причины изменения свойств металла.
10.09.2021 ГРУППА № 406 Тема урока: " Механические и технологические характеристики металлов"
Изучить материал и составить краткий конспект.
Механические свойства характеризуют способность материалов сопротивляться действию внешних сил. К основным механическим свойствам относятся прочность, твердость, ударная вязкость, упругость, пластичность, хрупкость и др.
Прочность — это способность материала сопротивляться разрушающему воздействию внешних сил.
Твердость — это способность материала сопротивляться внедрению в него другого, более твердого тела под действием нагрузки.
Вязкостью называется свойство материала сопротивляться разрушению под действием динамических нагрузок.
Упругость — это свойство материалов восстанавливать свои размеры и форму после прекращения действия нагрузки.
Пластичностью называется способность материалов изменять свои размеры и форму под действием внешних сил, не разрушаясь при этом.
Хрупкость — это свойство материалов разрушаться под действием внешних сил без остаточных деформаций.
Твердость металлов измеряется путем вдавливания в испытуемый образец твердого наконечника различной формы.
Технологические свойства определяют способность материалов подвергаться различным видом обработки. Литейные свойства характеризуются способностью металлов и сплавов в расплавленном состоянии хорошо заполнять полость литейной формы и точно воспроизводить ее очертания (жидкотекучестъю), величиной уменьшения объема при затвердевании (усадкой), склонностью к образованию трещин и пор, склонностью к поглощению газов в расплавленном состоянии. Ковкость — это способность металлов и сплавов подвергаться различным видам обработки давлением без разрушения. Свариваемость определяется способностью материалов образовывать прочные сварные соединения. Обрабатываемость резанием определяется способностью материалов поддаваться обработке режущим инструментом.
09.09.2021. ГРУППА №411 Темы уроков: " Кристаллическое строение металлов и сплавов",
" Диаграммы состояния сплавов."
Изучить материал и составить краткий конспект.
КРИСТАЛЛИЧЕСКОЕ СТРОЕНИЕ МЕТАЛЛОВ И СПЛАВОВ.
Все металлы в твердом состоянии имеют кристаллическое строение. Атомы в твердом металле расположены упорядоченно и образуют кристаллические решетки. Расстояния между атомами называют параметрами решеток и измеряют в нанометрах. С повышением температуры или давления параметры решеток могут изменяться. Некоторые металлы в твердом состоянии в различных температурных интервалах приобретают различную кристаллическую решетку, что всегда приводит к изменению их физико-химических свойств.
Существование одного и того же металла в нескольких кристаллических формах носит название полиморфизма, или аллотропии. Перестройка кристаллических решеток при критических температурах называется полиморфными превращениями. Полиморфные модификации обозначаются греческими буквами, которые в виде индекса добавляют к символу элемента.Под сплавом подразумевается вещество, полученное сплавлением двух элементов или более. Элементами сплава могут быть металлы и неметаллы. Эти элементы называются компонентами сплава. В сплаве кроме основных компонентов могут содержаться и примеси. Примеси бывают полезные, улучшающие свойства сплава, и вредные, ухудшающие его свойства. Примеси бывают случайные, попадающие в сплав при его приготовлении, и специальные, которые вводят для придания ему требуемых свойств.
Кристаллическое строение сплава более сложное, чем чистого металла, и зависит от взаимодействия его компонентов при кристаллизации. Компоненты в твердом сплаве могут образовывать твердый раствор, химическое соединение и механическую смесь.
Твердые растворы — компоненты сплава взаимно растворяются один в другом. В твердом растворе один из входящих в состав сплава компонентов сохраняет присущую ему кристаллическую решетку, а второй компонент в виде отдельных атомов распределяется внутри кристаллической решетки.
Химическое соединение — компоненты сплава вступают в химическое взаимодействие, при этом образуется новая кристаллическа решетка. Компоненты имеют определенное соотношение по массе.
Механическая смесь - компоненты сплава обладают полной взаимной нерастворимостью и имеют различные кристаллические решетки. При этих условиях сплав будет состоять из смеси кристаллов составляющих ее компонентов. Механическая смесь имеет постоянную температуру плавления. Механическая смесь, образовавшаяся одновременной кристаллизацией из расплава, называется эвтектикой; в процессе превращения в твердом состоянии — эвтектоидом.
ДИАГРАММЫ СОСТОЯНИЯ СПЛАВОВ.
Диаграммы состояния сплавов дают возможность правильно выбрать сплав, характеризуют его поведение при обработке, физические и механические свойства. Существуют различные типы диаграмм состояния в зависимости от числа компонентов и характера их взаимодействия друг с другом в твердом состоянии.
Для сплавов, состоящих из двух компонентов, выделяют четыре основных типа диаграмм состояния.
Диаграмма состояния 1-го рода характеризует сплавы (например, свинца с сурьмой), у которых компоненты в жидком виде полностью растворимы, а в твердом образуют механическую смесь.
Диаграмма состояния 2-го рода соответствует сплавам, у которых компоненты и в жидком, и в твердом состоянии неограниченно растворимы друг в друге (например, сплав меди и никеля).
Диаграмма состояния 3-го рода характеризует сплавы, компоненты в которых в жидком виде неограниченно растворимы, а в твердом состоянии ограниченно растворимы друг в друге (например, сплавы медь – серебро, сурьма – германий и др.)
а) кривые охлаждения; б) диаграмма состояния сплавов Рв – Sв
Рисунок 3- Построение диаграммы сплавов
свинец – сурьма по кривым охлаждения
Диаграмма состояния 4-го рода соответствует сплавам, которые в процессе кристаллизации образуют химическое соединение (например, сплав медь – германий).
Комментариев нет:
Отправить комментарий