21.09.2021г.
ПРЕДМЕТ: " МАТЕРИАЛОВЕДЕНИЕ"
Преподаватель: Пархоменко Лариса Ивановна
ГРУППА: № 406
ПРЕДМЕТ:" ОСНОВЫ МАТЕРИАЛОВЕДЕНИЯ И ТЕХНОЛОГИЯ ОБЩЕСЛЕСАРНЫХ РАБОТ"
ГРУППА: № 410
ГРУППА № 406 Темы уроков: "Алюминий и алюминиевые сплавы.", "Медь и медные сплавы."
Изучить материал и составить краткий конспект.
АЛЮМИНИЙ И АЛЮМИНИЕВЫЕ СПЛАВЫ.
Алюминий и его сплавы отличаются высокой технологичностью, хорошо деформируются, из них легко можно получать изделия сложной формы. Алюминий и ряд его сплавов обладают достаточно высокой коррозионной стойкостью. По электропроводности он уступает только серебру, меди и золоту.Температура плавления алюминия составляет 660 °С. Плотность алюминия 2,7 г/см3, ГЦК-решетка с периодом 0,40412 нм при 20 °С. Алюминий имеет также высокую тепло- и электропроводность. Электропроводность алюминия чистоты 99,5 % составляет 62,5 % от электропроводности меди. Алюминий — парамагнитный металл. Модуль Юнга алюминия равен 70 ГПа, что довольно высоко, но значительно меньше, чем у сталей.
Алюминий — химически активный металл. Однако при окислении (взаимодействии с кислородом воздуха) на поверхности образуется плотная пленка окисла Аl2O3, которая защищает его от дальнейшего взаимодействия с окружающей средой на воздухе. При комнатной температуре толщина этой пленки составляет 5–10 нм. При нагреве до температуры плавления толщина окисной пленки возрастает до 200 нм. Окись алюминия имеет удельный объем, близкий к удельному объему алюминия, поэтому пленка плотная (без трещин).
Некоторые разбавленные кислоты взаимодействуют с алюминием сильнее, чем концентрированные. Концентрированная холодная азотная кислота не растворяет алюминий, а разбавленная — разрушает очень быстро. То же относится и к серной кислоте.
Алюминий устойчив во многих органических кислотах: уксусной, лимонной, винной и др.
Алюминий быстро растворяется в растворах едких щелочей. При комнатной температуре алюминий не взаимодействует с водой, парами воды, СО, СО2, при высоких температурах реагирует с ними. Энергичное взаимодействие алюминия с парами воды начинается с 500 °С и резко ускоряется при плавлении по реакции: 2Аl + 3H2O → Al2O3 + 3H2. Специфическим свойством алюминия, которое определило его применение в атомных реакторах, является его способность поглощать нейтроны. Алюминий не дает ни с одним из элементов ряд непрерывных твердых растворов.Легирование алюминия различными элементами осуществляется для повышения прочности. С основными компонентами промышленных сплавов алюминий дает двойные системы эвтектического типа . Со многими элементами алюминий образует двойные, тройные и более сложные интерметаллиды, как кристаллизующиеся из расплава, так и выделяющиеся из твердого раствора на базе алюминия при отжиге и старении.
МЕДЬ И ЕЕ СПЛАВЫ.
Медь относится к группе цветных металлов, наиболее широко применяемых в промышленности. Порядковый номер меди в периодической системе Д. И. Менделеева — 29, атомный вес А = 63,57. Медь имеет гранецентрированную кубическую решетку (ГЦК) с периодом а = 3,607 Å.Медь — немагнитный металл. Она обладает хорошей технологичностью: обрабатывается давлением, резанием, легко полируется, хорошо паяется и сваривается, имеет высокую коррозионную стойкость. Основная область применения — электротехническая промышленность.
Электропроводность меди существенно понижается при наличии даже очень небольшого количества примесей. Поэтому в качестве проводникового материала применяют в основном особо чистую медь М00 (99,99 %), электролитическую медь М0 (99,95 %), М1 (99,9 %). Марки технической меди М2 (99,7 %), М3 (99,5 %), М4 (99,0 %).
Латуни — это медные сплавы, в которых основным легирующим элементом является цинк.В зависимости от содержания цинка латуни промышленного применения бывают:
- однофазные a — латуни, содержащие до 39 % цинка (это предельная растворимость цинка в меди);
- двухфазные (a+b|)- латуни, содержащие до 46 % цинка;
- однофазные b|- латуни ,содержащие до 50 % цинка.
В зависимости от механических свойств различают медь твердую, нагартованную (МТ) и медь мягкую, отожженную (ММ).
Вредными примесями в меди являются висмут, свинец, сера и кислород. Действие висмута и свинца аналогично действию серы в стали; они образуют с медью легкоплавкие эвтектики, располагающиеся по границам зерен, что приводит к разрушению меди при ее обработке давлением в горячем состоянии (температура плавления эвтектики соответственно 270 0С и 326 0С).
Сера и кислород снижают пластичность меди за счет образования хрупких химических соединений Сu2O и Сu2S.
В качестве конструкционного материала технически чистую медь применяют редко, так как она имеет низкие прочностные свойства, твердость. Основными конструкционными материалами на основе меди являются сплавы латуни и бронзы. Для маркировки медных сплавов используют следующее буквенное обозначение легирующих элементов:
- О — олово; Ц — цинк; Х — хром;
- Ж — железо; Н — никель; С — свинец;
- К — кремний; А — алюминий; Ф — фосфор;
- Мц — марганец; Мг – магний; Б – бериллий.
Бронзы — это сплавы меди с оловом, алюминием, кремнием и другими элементами.По технологическому признаку бронзы делятся на деформируемые и литейные. Деформируемые маркируются буквами Бр, после которых перечисляются легирующие элементы, а затем соответственно содержание этих элементов в процентах. Содержание меди определяется по разности от 100 %. Например, БрОЦС 8-4-3 содержит 8 % Sn, 4 % Zn, 3 % Pb, 85 % Сu.Литейные бронзы маркируются аналогично литейным латуням. Например, бронза Бр06Ц3Н6 содержит 6 % Sn, 3 % Zn, 6 % Pb, 85 % Сu.
ГРУППА № 410 Темы уроков: "Влияние термообработки на свойства стали"," Химико-термическая обработка стали."
Изучить материал и составить краткий конспект.
ВЛИЯНИЕ ТЕРМИЧЕСКОЙ ОБРАБОТКИ НА СВОЙСТВА СТАЛИ.
В результате термической обработки существенно изменяются механические свойства сталей. В отожженном состоянии структура стали состоит из Ф и Ц пластинчатой формы. Феррит обладает низкой прочностью и высокой пластичностью, цементит - высокой твердостью (НВ800) и нулевой пластичностью. С увеличением цементитной составляющей sв, повышается (при увеличении содержании С) и снижается пластичность.
При одном и том же содержании углерода прочностные характеристики (НВ, sв) стали возрастают с увеличением дисперсности карбидной составляющей .Высокая твердость мартенситной структуры закаленной стали обуславливается созданием структурных напряжений, вызванных искажением кристаллической решетки. Наряду с твердостью большое значение имеет пластичность. Чем выше твердость стали, тем обычно ниже пластичность, но при одинаковой твердости можно получить термической обработкой различную пластичность и вязкость стали. Вязкость и пластичность стали в значительной мере зависят от размера мартенситных игл и продуктов его распада. Для получения высокого комплекса механических свойств закаленной стали следует стремиться к получению мелкоигольчатой структуры мартенсита, что достигается мелкозернистой структурой аустенита. Отпуск существенно изменяет свойства закаленной стали. Нагрев до 100° С сопровождается слабым повышением твердости на 1-2 ед. в высокоуглеродистых сталях). С повышением температуры отпуска твердость и прочность падают, тогда как повышаются вязкость и пластичность. Закаленная и отпущенная сталь имеет более высокие механические свойства, чем отожженная и нормализованная, что объясняются различным строением сорбита отпуска и закалки, (пластинчатой в первом случае и зернистого во втором). Закалка и высокий отпуск называются улучшением, так как существенно улучшают механические свойства и получается оптимальное сочетание прочностных и пластинчатых свойств стали.
ХИМИКО-ТЕРМИЧЕСКАЯ ОБРАБОТКА СТАЛИ.
Химико-термическая обработка металлов - нагрев и выдержка металлических (а в ряде случаев и неметаллических) материалов при высоких температурах в химически активных средах (твёрдых, жидких, газообразных).
В подавляющем большинстве случаев химико-термическую обработку проводят с целью обогащения поверхностных слоев изделий определёнными элементами. Их называют насыщающими элементами или компонентами насыщения.
В результате ХТО формируется диффузионный слой, т.е. изменяется химический состав, фазовый состав, структура и свойства поверхностных слоев. Изменение химического состава обуславливает изменения структуры и свойств диффузионного слоя.
В зависимости от насыщающего элемента различают следующие процессы химико-термической обработки:
- однокомпонентные: цементация стали - насыщение углеродом; азотирование - насыщение азотом; алитирование - насыщение алюминием; хромирование - насыщение хромом; борирование - насыщение бором; силицирование - насыщение кремнием;
- многокомпонентные: нитроцементация (цианирование, карбонитрация) - насыщение азотом и углеродом; боро- и хромоалитирование - насыщение, бором или хромом и алюминием, соответственно; хромосилицирование – насыщение хромом и кремнием и т.д.
Широкое промышленное применение получили только традиционные процессы насыщения: азотирование, цементация, нитроцементация, цианирование. Цинкование, алитирование, борирование, хромирование, силицирование применяют значительно в меньшей мере.
На практике в подавляющем большинстве случаев ХТО подвергают сплавы на основе железа (стали и чугуны), реже - сплавы на основе тугоплавких металлов, твердые сплавы и ещё реже сплавы цветных металлов, хотя практически все металлы могут образовывать диффузионные слои с подавляющим большинством химических элементов Периодической системы элементов Д.И. Менделеева.
При реализации любого процесса ХТО изделия выдерживают определённое время при температуре насыщения в окружении насыщающей среды. Насыщающие среды могут быть твёрдыми, жидкими или газообразными.
Комментариев нет:
Отправить комментарий