понедельник, 6 декабря 2021 г.

                                                                           07.12.2022г

ПРЕДМЕТ: " МАТЕРИАЛОВЕДЕНИЕ С ВЫПОЛНЕНИЕМ СЛЕСАРНЫХ РАБОТ"

Преподаватель: Пархоменко Лариса Ивановна

ГРУППА № 410 

ПРЕДМЕТ:" МАТЕРИАЛОВЕДЕНИЕ."

ГРУППА № 412

ГРУППА № 410  темы уроков : " Допуски, посадки.", " Технические измерения."

Изучить материал и составить краткий конспект. 

Допуском (Т) называется разность между наибольшим и наименьшим предельными размерами детали. Т. е. допуск – это интервал между предельными размерами, в пределах которого деталь не считается браком.
Допуск на размер вала обозначают Тd, отверстия – TD. Очевидно, что чем больше допуск на размер, тем легче изготовить деталь.
Допуск на размер детали может быть определен, как разность между предельными размерами или как сумма предельных отклонений:

TD(d) = D(d)max – D(d)min = ES(es) + EI(ei),

при этом следует учитывать знаки предельных отклонений, поскольку допуск на размер детали всегда положителен (не может быть меньше нуля).

***

Посадки

Характер соединения, определяемый разностью между охватывающим и охватываемым размером, называется посадкой.
Положительная разность между диаметрами отверстия и вала называется зазором (обозначается буквой S), а отрицательная – натягом (обозначается буквой N).
Иными словами, если диаметр вала меньше диаметра отверстия – имеет место зазор, если же диаметр вала превышает диаметр отверстия – в сопряжении присутствует натяг.
Зазор определяет характер взаимной подвижности сопряженных деталей, а натяг - характер их неподвижного соединения.

В зависимости от соотношения действительных размеров вала и отверстия различают подвижные посадки - с зазором, неподвижные посадки - с натягом и переходные посадки, т. е. посадки, в которых может присутствовать и зазор, и натяг (в зависимости от того, какие отклонения имеют действительные размеры сопрягаемых деталей от номинальных размеров).
Посадки, в которых обязательно присутствует зазор, называют посадками с гарантированным зазором, а посадки, в которых обязателен натяг – с гарантированным натягом.
В первом случае так выбирают предельные размеры отверстия и вала, чтобы в сопряжении был гарантированный зазор.
Разность между наибольшим предельным размером отверстия (Dmax) и наименьшим предельным размером вала (dmin) определяет наибольший зазор (Smax):

Smax = Dmax – dmin.

Разность между наименьшим предельным размером отверстия (Dmin) и наибольшим предельным размером вала (dmax) - наименьший зазор (Smin):


                                                                 ТЕХНИЧЕСКИЕ  ИЗМЕРЕНИЯ.

Измерения могут быть классифицированы по метрологическому назначению на три категории:

ненормированные,

технические,

метрологические.

Ненормированные - измерения при ненормированных метрологических характеристиках.

Технические - измерения при помощи рабочих средств измерений.

Метрологические - измерения при помощи эталонов и образцовых средств измерений.

Ненормированные измерения наиболее простые. В них не нормируются точность и достоверность результата. Поэтому область их применения ограничена. Они не могут быть применены в области, на которую распространяется требование единства измерений. Каждый из нас выполнял ненормированные измерения длины, массы, времени, температуры не задумываясь о точности и достоверности результата. Как правило, результаты ненормированных измерений применяются индивидуально, т.е. используются субъектом в собственных целях.

Технические измерения удовлетворяют требованиям единства измерений, т.е. результат бывает получен с известной погрешностью и вероятностью, записывается в установленных единицах физических величин, с определенным количеством значащих цифр. Выполняются при помощи средств измерений с назначенным классом точности, прошедших поверку или калибровку в метрологической службе. В зависимости от того, предназначены измерения для внутрипроизводственных целей или их результаты будут доступны для всеобщего применения, необходимо выполнение калибровки или поверки средств измерений. Средство измерений, прошедшее калибровку или поверку, называют рабочим средством измерений. Примером технических измерений является большинство производственных измерений, измерение квартирными счетчиками потребленной электроэнергии, измерения при взвешивании в торговых центрах, финансовые измерения в банковских терминалах. Средство измерений, применяемое для калибровки других средств измерений, называют образцовым средством измерений. Образцовое средство измерений имеет повышенный класс точности и хранится отдельно, для технических измерений не применяется.

ГРУППА № 412 темы уроков: " Зависимость качества  от химического состава.", "Ударная вязкость."

Изучить материал и составить краткий конспект.

                             ЗАВИСИМОСТЬ  КАЧЕСТВА  МЕТАЛЛА ОТ ХИМ. СОСТАВА.

Свойства сталей зависят от их состава и структуры, которые формируются присутствием и процентным содержанием следующих составляющих.

Углерод — элемент, с увеличением содержания которого в стали увеличивается её твёрдость и прочность, при этом уменьшается пластичность.

Кремний и марганец в пределах (0,5 … 0,7 %) существенного влияния на свойства стали не оказывают. Эти элементы вводятся в большинство углеродистых и низколегированных марок сталей во время операции раскисления (сначала - ферромарганец, затем-ферросилиций, как дешевые раскисляющие ферросплавы).

Цементит — карбид железа, химическое соединение с формулой Fe3C, наоборот, предоставляет стали твёрдость и хрупкость. При появлении в структуре заэвтектоидной стали свободного цементита (при С более 0,8 %) пропадает четкая связь между содержанием углерода и комплексом механических свойств: твердостью, ударной вязкостью и прочностью.

Перлит — эвтектоидная (мелкодисперсная механическая смесь) смесь двух фаз — феррита и цементита, содержит 1/8 цементита (точнее - согласно правилу "рычага", если пренебречь растворимостью углерода в феррите при комнатной температуре - 0,8/6,67) и поэтому имеет повышенную прочность и твёрдость по сравнению с ферритом. Поэтому доэвтектоидные стали гораздо более пластичны, чем заэвтектоидные.

Стали содержат до 2,14 % углерода. Фундаментом науки о стали как сплава железа с углеродом является диаграмма состояния сплавов железо-углерод — графическое отображение фазового состояния сплавов железа с углеродом в зависимости от их химического состава и температуры. Для улучшения механических и других характеристик сталей применяют легирование. Главная цель легирования подавляющего большинства сталей — повышение прочности за счет растворения легирующих элементов в феррите и аустените, образования карбидов и увеличения прокаливаемости. Кроме того, легирующие элементы могут повышать устойчивость против коррозии, термостойкость, жаропрочность и др. Такие элементы, как хром, марганец, молибден, вольфрам, ванадий, титан образуют карбиды, а никель, кремний, медь, алюминий карбидов не образуют. Кроме того, легирующие элементы уменьшают критическую скорость охлаждения при закалке, что необходимо учитывать при назначении режимов закалки (температуры нагрева и среды для охлаждения). При значительном количестве легирующих элементов может существенно измениться структура, что приводит к образованию новых структурных классов по сравнению с углеродистыми сталями.

Сера является вредной примесью, образует с железом химическое соединение FeS (сернистое железо). Сернистое железо в сталях образует с железом эвтектику с температурой плавления 1258 К, которая обусловливает ломкость материала при обработке давлением с подогревом. Указанная эвтектика при термической обработке расплавляется, в результате чего между зернами теряется связь с образованием трещин. Кроме этого, сера уменьшает пластичность и прочность стали, износостойкость и коррозионную стойкость.

Фосфор также является вредной примесью, т. к. придает стали хладноломкость (хрупкость при пониженных температурах). Это объясняется тем, что фосфор вызывает сильную внутрикристаллическую ликвацию. Однако существует группа сталей с повышенным содержанием фосфора, так называемые - "автоматные стали", металлоизделия из которых легко поддаются обработке резанем (например, болты, гайки и пр. на револьверных токарных станках-полуавтоматах).

Феррит — железо с объемноцентрированной кристаллической решеткой и сплавы на его основе обладают мягкой и пластичной микроструктуры.  

     УДАРНАЯ  ВЯЗКОСТЬ. 

Ударная вязкость — способность материала поглощать механическую энергию в процессе деформации и разрушения под действием ударной нагрузки.

Основным отличием ударных нагрузок от испытаний на растяжение-сжатие или изгиб является гораздо более высокая скорость выделения энергии. Таким образом, ударная вязкость характеризует способность материала к быстрому поглощению энергии.

Обычно оценивается работа до разрушения или разрыва испытываемого образца при ударной нагрузке, отнесённой к площади его сечения в месте приложения нагрузки. Выражается в Дж/см2 или в кДж/м2. Ударную вязкость обозначают KCV, KCU, KCT. KC – символ ударной вязкости, третий символ показывает вид надреза: острый (V), с радиусом закругления (U), трещина (Т)

Существующие лабораторные методы отличаются по

  • способу закрепления образца на испытательном стенде
  • способу приложения нагрузки — падающая гиря, маятник, молот…
  • наличию или отсутствию надреза в месте приложения удара

Для испытания «без надреза» выбирается лист материала с равной толщиной по всей площади. При проведении испытания «с надрезом» на поверхности листа проделывается канавка, как правило, на стороне, обратной по отношению к месту удара, на всю ширину (длину) образца, глубиной на 1/2 толщины.

Ударная вязкость при испытании «без надреза» может превышать результат испытаний «с надрезом» более чем на порядок.

Среди распространенных методов испытаний на ударную вязкость следует отметить:

Комментариев нет:

Отправить комментарий

 15.03.2024г.                Предмет " ОСНОВЫ  ИНЖЕНЕРНОЙ   ГРАФИКИ" ГРУППА № 610 Темы уроков: " Виды нормативов  и  техничес...