15.11.2021г
ПРЕДМЕТ: " ОСНОВЫ ЭЛЕКТРОТЕХНИКИ ", " ЭЛЕКТРОТЕХНИКА."
ГРУППЫ: № 412, № 301, № 411
Преподаватель: Пархоменко Лариса Ивановна
ГРУППА № 412 темы уроков:" Вращающееся магнитное поле.","Принцип действия и устройство асинхронного двигателя."
Изучить материал и составить краткий конспект.
Вращающееся магнитное поле.
Обычно под вращающимся магнитным полем понимается магнитное поле, вектор магнитной индукции которого, не изменяясь по модулю, вращается с постоянной угловой скоростью.
Также вращающимися магнитными полями называют и магнитные поля вращающихся постоянных магнитов.
Существуют вращающиеся магнитные поля ось вращения которых не совпадает с их осью симметрии (например, магнитные поля звезд или планет).
Вращающееся магнитное поле создают, накладывая два или более разнонаправленных переменных, зависящих от времени по синусоидальному закону, магнитных поля одинаковой частоты, но сдвинутых друг относительно друга по фазе.
Вращающееся магнитное поле практически осуществлено независимо в 1888 году итальянским физиком Г. Феррарисом и сербским инженером Н. Тесла. Применяется в синхронных и асинхронных машинах.
Разность фаз для двухфазных систем (два перпендикулярных ориентированных электромагнита) в однополюсных машинах должна составлять 90°, а для 3-фазных (три электромагнита, направленных в одной плоскости под углом 120° друг к другу) 120°.
В синхронных генераторах переменного тока ротор является либо постоянным магнитом, либо электромагнитом, питаемым постоянным током — током возбуждения. Вращающееся магнитное поле в таких машинах индуктирует в обмотках статора ЭДС, причём если машина однополюсная, то частота ЭДС равна частоте вращения ротора. В тахометрах вращающийся постоянный магнит увлекает неферромагнитный металлический диск, вал которого снабжён пружиной, создающей противодействующий вращательный момент.
Счётчики электрической энергии, например, бытовые счётчики, работают по аналогичному принципу - увлечения проводящего неферромагнитного диска вращающимся магнитным полем, создаваемым обмотками тока потребления и напряжения сети.
Также вращающееся магнитное поле применяется в лабораторных мешалках жидкости.
Принцип действия и устройство асинхронного двигателя.
Одним из наиболее распространенных типов электрических машин в мире является асинхронный электродвигатель. За счет высокой надежности и неприхотливости в работе такие агрегаты получили широкое распространение в самых различных отраслях промышленности и сельского хозяйства, они помогают решать бытовые и общепроизводственные задачи любой сложности. Конструктивно простейшая асинхронная машина представляет собой рамку, вращающуюся в переменном магнитном поле. Однако на практике данная модель носит скорее ознакомительный характер и практического применения в промышленности не имеет. Поэтому на рисунке 1 ниже мы рассмотрим устройство действующей модели асинхронного электродвигателя.

Весь двигатель располагается в корпусе станины 7, ее основная задача состоит в обеспечении достаточной механической прочности, способной выдерживать достаточные усилия. Поэтому чем выше мощность агрегата, тем большей прочностью должна обладать станина и корпус.
Внутрь корпуса устанавливается сердечник статора 3, выступающий в роли магнитного проводника для силовых линий рабочего поля. С целью уменьшения потерь в стали магнитопровод выполняется наборным из шихтованных листов, однако в ряде моделей применяется и монолитный вариант.
В пазы сердечника статора укладывается обмотка 2, предназначенная для пропуска электрического тока и формирования ЭДС. Число обмоток будет зависеть от количества пар полюсов на каждую фазу. Также в части уложенных обмоток электродвигатели подразделяются на:
- трехфазные;
- двухфазные;
- однофазные.
Внутри статора располагается подвижный элемент – ротор 6. По конструкции ротор может быть короткозамкнутым или фазным, на рисунке приведен первый вариант. В состав ротора входит сердечник 5, также набранный из шихтованной стали и беличья клетка 4. Вся конструкция насажена на металлический вал 1, передающий вращение и механическое усилие.
Принцип работы заключается в формировании электромагнитного поля вокруг проводника, по которому протекает электрический ток. Для асинхронного электродвигателя данный процесс начинается сразу после подачи напряжения на обмотки статора, после чего в роторе наводится ЭДС взаимоиндукции, индуцирующей вихревые токи в металлическом каркасе. Наличие вихревых токов обуславливает генерацию собственной ЭДС, которая формирует электромагнитное поле ротора. Наиболее эффективный КПД асинхронной электрической машины получается при работе от трехфазной сети.
Конструктивно обмотки статора имеют смещение в пространстве друг относительно друга на 120°, что показано на рисунке 2 ниже:

Такой прием позволяет отстроить магнитное поле рабочих обмоток в строгом соответствии с напряжением трехфазной сети, которое имеет аналогичную разность кривых электрической величины.
ГРУППА № 301 тема урока: " Явление электромагнитной индукции."Изучить материал и составить краткий конспект.
Явление электромагнитной индукции было открыто Майклом Фарадеем в 1831 году. Он опытным путем установил, что при изменении магнитного поля внутри замкнутого проводящего контура в нем возникает электрический ток, который назвали индукционным током.
- Если в соленоид (катушка индуктивности), который замкнут на гальванометр, вдвигать или выдвигать постоянный магнит, то в моменты его вдвигания или выдвигания мы видим отклонение стрелки гальванометра (возникает индукционный ток); при этом отклонения стрелки при вдвигании и выдвигании магнита имеют противоположные направления. Отклонение стрелки гальванометра тем больше, чем больше скорость движения магнита относительно катушки. При смене в опыте полюсов магнита направление отклонения стрелки также изменится. Для получения индукционного тока можно оставлять магнит неподвижным, тогда нужно относительно магнита перемещать соленоид.
- Если рядом расположить две катушки (например, на общем сердечнике или одну катушку внутри другой) и одну катушку через ключ соединить с источником тока, то при замыкании или размыкании ключа в цепи первой катушки во второй катушке появится индукционный ток. В моменты включения или выключения тока наблюдается отклонение стрелки гальванометра, а также в моменты его уменьшения или увеличения, а также при перемещении катушек друг относительно друга. Направления отклонений стрелки гальванометра также имеют противоположные направления при включении или выключении тока, его увеличении или уменьшении, приближении или удалении катушек.
Исследуя результаты своих многочисленных опытов, Фарадей пришел к заключению, что индукционный ток возникает всегда, когда в опыте осуществляется изменение сцепленного с контуром потока магнитной индукции (магнитного потока). Например, при повороте в однородном магнитном поле замкнутого проводящего контура в нем также появляется индукционный ток
В результате опыта было также установлено, что значение индукционного тока абсолютно не зависит от способа изменения потока магнитной индукции, а определяется лишь скоростью его изменения (также в опытах Фарадея доказывается, что отклонение стрелки гальванометра (сила тока) тем больше, чем больше скорость движения магнита, или скорость изменения силы тока, или скорость движения катушек).
Открытие явления электромагнитной индукции имело огромное значение, поскольку появилась возможность получения электрического тока с помощью магнитного поля. Этим открытие дало взаимосвязь между электрическими и магнитными явлениями, что в дальнейшем послужило толчком для разработки теории электромагнитного поля.
ГРУППА № 411 темы уроков: " Роль электротехники и электроники для НТП.", "Электротехническая терминология."
Изучить материал и составить краткий конспект.
Роль электротехники и электроники для НТП.
Развитие физической электроники, открытие новых физических явлений, установление их качественных и количественных закономерностей стимулирует развитие электронной техники. На базе этих открытий оказывается возможным:
1) создавать принципиально новые приборы (газовые и твердотельные лазеры, полупроводниковые приборы с зарядовой связью, поверхностными акустическими волнами, оптоэлектронные приборы и др.);
2) разрабатывать прогрессивные технологические процессы производства приборов (ионно-плазменное легирование полупроводников, лазерная обработка тонких плёнок, электронолитография, рентгенолитография и др.), позволяющие существенно улучшить параметры приборов и решить коренную задачу современной электронной техники – максимальную микроминиатюризацию и высокую степень интеграции твердотельных приборов;
3) расширять и углублять представление о физических процессах в электронных приборах, что даёт возможность разработчикам электронных устройств и систем обоснованно выбирать элементную базу и режимы работы приборов.
Физическая электроника стимулирует развитие не только собственной материальной базы – электронной техники, но и ряда других технических направлений. В частности, достижения физической электроники открыли принципиально новые пути в области энергетики. К ним можно отнести преобразование солнечной энергии в электрическую, непосредственное преобразование тепловой энергии в электрическую в МГД-генераторах и термоэмиссионных преобразователях, передачу электроэнергии на дальние расстояния линиями передач постоянного тока напряжением свыше миллиона вольт и т.п. Роль электроники в современной науке и технике огромна. Она справедливо считается катализатором научно-технического прогресса. Без электроники немыслимы ни успехи в освоении космоса и океанских глубин, ни развитие атомной энергетики и вычислительной техники, ни автоматизация производства, ни радиовещание и телевидение, ни изучение живых организмов. На базе достижений электроники развивается промышленность, выпускающая электронную аппаратуру для различных видов связи, автоматики, телевидения, радиолокации, вычислительной техники, систем управления технологическими процессами, светотехники, инфракрасной техники, рентгенотехники и др
Электротехническая терминология.
Самые важные понятия электротехники: электрический ток, контур электрического тока, электродвижущая сила, напряжение, электрическое сопротивление, закон Ома, электрическая энергия и мощность.
1.Электрический ток- движущиеся носители электрического заряда образуют электрический ток подобно тому, как движущиеся частички воздуха или воды образуют воздушный или водяной поток. В зависимости от способности различных материалов проводить электрический ток они разделяются на проводники, диэлектрики и полупроводники.
2.К проводникам относятся вещества, обладающие электронной проводимостью, — проводники 1-го рода (все металлы, уголь) и вещества, обладающие ионной проводимостью, — проводники 2-го рода (кислоты, основания, растворы солей). Металлы содержат большое количество свободных электронов (около 1023 в одном кубическом сантиметре), которые характеризуются большой подвижностью.
Диэлектрики содержат незначительное количество свободных электронов. Поэтому они используются в качестве электроизоляционных материалов.
В полупроводнике перемещение электрических зарядов происходит при движении не только электронов, но и так называемых "дырок". Дырки представляют собой незанятые электронами места в кристаллической решетке и по своим функциям уподобляются носителям положительных зарядов.
По способности проводить электрический ток полупроводники стоят между проводниками и диэлектриками, причем их проводимость в значительной степени зависит от имеющихся в них примесей.
Наличие тока можно обнаружить по тем эффектам, которые он вызывает. Три эффекта сопровождают электрический ток:
в среде, окружающей провода с током, наблюдается магнитное поле;
проводник, по которому течет ток, нагревается;
в проводниках с ионной проводимостью при электрическом токе наблюдается перенос вещества.
|
Комментариев нет:
Отправить комментарий